Non-separating subgraphs in highly connected graphs
نویسندگان
چکیده
منابع مشابه
Highly connected monochromatic subgraphs of multicolored graphs
We consider the following question of Bollobás: given an r-colouring of E(Kn), how large a k-connected subgraph can we find using at most s colours? We provide a partial solution to this problem when s = 1 (and n is not too small), showing that when r = 2 the answer is n−2k+2, when r = 3 the answer is ⌊n−k 2 ⌋+1 or ⌈n−k 2 ⌉ + 1, and when r − 1 is a prime power then the answer lies between n r−1...
متن کاملHighly connected multicoloured subgraphs of multicoloured graphs
Suppose the edges of the complete graph on n vertices, E(Kn), are coloured using r colours; how large a k-connected subgraph are we guaranteed to find, which uses only at most s of the colours? This question is due to Bollobás, and the case s = 1 was considered in [3]. Here we shall consider the case s > 2, proving in particular that when s = 2 and r + 1 is a power of 2 then the answer lies bet...
متن کاملNon-separating trees in connected graphs
Let T be any tree of order d ≥ 1. We prove that every connected graph G with minimum degree d contains a subtree T ′ isomorphic to T such that G − V (T ) is connected.
متن کاملSparse highly connected spanning subgraphs in dense directed graphs
Mader (1985) proved that every strongly $k$-connected $n$-vertex digraph contains a strongly $k$-connected spanning subgraph with at most $2kn - 2k^2$ edges, and this is sharp. For dense strongly $k$-connected digraphs, the bound can be significantly improved for dense strongly $k$-connected digraphs. Let $\overline{\Delta}(D)$ be the maximum degree of the complement of the underlying undirecte...
متن کاملForcing highly connected subgraphs
By a theorem of Mader [5], highly connected subgraphs can be forced in finite graphs by assuming a high minimum degree. Solving a problem of Diestel [2], we extend this result to infinite graphs. Here, it is necessary to require not only high degree for the vertices but also high vertex-degree (or multiplicity) for the ends of the graph, i.e. a large number of disjoint rays in each end. We give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2016
ISSN: 0095-8956
DOI: 10.1016/j.jctb.2015.12.001